

NIAGARA SUMMIT

CONNECTING THE WORLD

Department of Energy – Advanced Controls

Paul Ehrlich, PE Pacific Northwest National Laboratory

Controls Challenges

- System designers lack tools to design and validate control sequences
- Engineers sequences have to be interpreted by contractors a process that is slow, error prone, and frustrating
- Optimized controls can save energy but are more complicated and costly to implement.
- Advanced controls are more sensitive to errors in programming, bad sensors, etc.

Solutions

- ASHRAE Guideline 36: Test and document controls best practices
- Open Building Controls: Tools to model sequences, machine readable formats, verification tools
- Adaptive Controls: Use model predictive control and machine learning to make systems self optimizing

TRIDIUÂ

Open Building Control: Design and implement control sequences error-free and at lower cost to owner

Codify best practice

Design Implement

Verify against original design

BACnet standardized communication.

Open Building Control will standardize:

- Design: Libraries, modeling tools, electronic representation of sequences
- Delivery: Sequences can be translated instead of being interpreted
- Verification: Delivered sequence can be verified against design

OBC Team and Status

- Project being led by Lawrence Berkeley National Lab with funding from DOE
- Close cooperation with ASHRAE Guideline 36
- Outside project team and advisors include:
 - Leading controls system designers (Taylor, Santos, Goldschmidt, etc.)
 - Large owners (GSA, Stanford, Oracle, CBRE)
 - Controls suppliers (ALC, Distech, Tridium, etc.)
- Status: Work started in 2016, modeling tools are completed, work on translating CDL is under way.

Case study: Multi-zone VAV controls and equipment

- · Full airflow network.
- Wind pressure driven infiltration.
- All flows based on flow friction, damper positions and fan curves.
- 4,000 components, 40,000 variables, adaptive time step, state/time events.

TRIDIUÂ

Static pressure reset requests Hot water reset requests

Modeling Results

- ~30% annual site HVAC energy savings for Chicago, solely due to controls.
- Can simulate actual control sequences, with dynamic response.
- Packaging of sequences is important, because interpretation and implementation of the sequences was more timeconsuming and error-prone than anticipated.

8

Open Building Control Next Steps

- Simulations completed, controls description language defined
- Next step is to collaborate with controls suppliers to develop translators that will transform the CDL into their proprietary controls language
- Continued work on validation tools
- Final step is field testing

Adaptive Controls Using Machine Learning

- Model Predictive Control (MPC) is the "next thing" for controls
- Systems use real world data coupled with models and simulations to learn in real time how to operate in an optimal method
- This process is being widely used in many areas but is new for building controls
- System parameters such as comfort, capacity, etc. can be constrained in the model

Adaptive Team and Status

- Project being led by Pacific Northwest National Lab with funding from DOE
- Project is being done in coordination with other programs related to fault detection and diagnostics
- Status: Work started in 2016, modeling and simulations are underway, next step is real world testing

Adaptive Supervisory Control

Existing typical implementations

Objectives

- HVAC energy consumption reduction: >15%
- Eliminate need for manual seasonal tuning of supervisory control: self-learning
- Scalable installation process: cost-effective

Adaptive Supervisory Control

Proposed control architecture

- Automated data-driven equipment characterization and load estimation
- Set-point coordination based on robust optimization: self-optimizing
- Use of machine learning and model predictive control

Optimization Model

$$\begin{split} z(\Theta) &= \min_{x^1,\dots,x^{k'}} \left\{ \sum_{t \in \mathcal{T}} \left(\eta_f P_f^t + \eta_h P_h^t + \eta_c P_c^t \right) + \lambda v^2 \right\}, \\ \text{s.t.} \quad T_n^t &= \sum_{j=1}^q \widehat{\alpha}_n^j T_n^{t-j} + \widehat{\beta}_n m_n^t \left(T_{s,n}^t - T_n^t \right) + \widehat{\gamma}_n T_o^t + Q_n^t, \\ P_f^t &= \theta_0 + \theta_1 \sum_{n \in \mathcal{N}} m_n^t + \theta_2 \left(\sum_{n \in \mathcal{N}} m_n^t \right)^2 + \theta_3 p^t, \\ \left(p^t, \sum_{n \in \mathcal{N}} m_n^t \right) \in \widehat{\mathcal{C}}, \\ P_h^t &= \nu_h c_p \sum_{n \in \mathcal{N}} m_n^t \left(T_i^t - T_m^t \right) + c_p \sum_{n \in \mathcal{N}} \nu_n m_n^t \left(T_{s,n}^t - T_s^t \right) \\ P_c^t &= \nu_c c_p \sum_{n \in \mathcal{N}} m_n^t \left(T_i^t - T_s^t \right), \\ T_r^t &= \sum_{n \in \mathcal{N}} m_n^t T_n^t / \sum_{n \in \mathcal{N}} m_n^t, \\ T_m^t &= d^t T_o^t + (1 - d^t) T_r^t, \\ T_n^t &\leq T_n^t - v, \\ T_n^t &\leq T_n^u + v, \end{split}$$

Variable	Notation	Units	Range
Supply-air temperature	T_s^t	°C	[12.8, 70.0]
Discharge-air temperature in zone \boldsymbol{n}	$T_{s,n}^t$	°C	$[T_s^t, 70.0]$
Mixed-air temperature	T_m^t	°C	$[\min\{T_o^t, T_r^t\}, \max\{T_o^t, T_r^t\}]$
Mass-flow rate in zone 1	m_1^t	kg/s	[1.31, 13.10]
Mass-flow rate in zone 2	m_2^t	kg/s	[0.27, 2.70]
Mass-flow rate in zone 3	m_3^t	kg/s	[0.18, 1.79]
Mass-flow rate in zone 4	m_4^t	kg/s	[0.23, 2.28]
Mass-flow rate in zone 5	m_5^t	kg/s	[0.21, 2.08]
Static pressure	p^t	Pa	[24.88, 171.70]

* Note that T_o^t is a measured variable, while T_r^t is simply an auxiliary decision.

Parameter	Description	Value	Unit
K	Length of the prediction horizon	20	stage
ν_c	Efficiency of the AHU cooling coils	1.0	-
ν_h	Efficiency of the AHU heating coils	1.0	-
ν_n	Efficiency of the VAV reheat coils	1.0	-
T_n^ℓ, T_n^u	Lower and upper bounds for the zone temperatures in occupied interval	21.1, 23.9	°C
T_n^ℓ, T_n^u	Lower and upper bounds for the zone temperatures in unoccupied interval	15, 30	°C
η_f, η_b, η_c	Weights in the optimization objective	1,1,2	-
λ	Slack parameter	10^{5}	-

TRIDIUM 14

Zone temperatures (floor 1)

The model constrains comfort

TRIDIUM 15

Modeled Results

Equipment type

Model shows 30% improved efficiency vs optimized VAV

TRIDIUM 16

Next Steps for Adaptive Controls and MPC

- Additional modeling and simulations
- Deploy in advanced controls lab using PNNL developed tools

Contact Info

Paul Ehrlich (651) 204-0105 Paul.Ehrlich@pnnl.gov

